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Unsteady hydrodynamic effect of rotation
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Owing to the inertial effect of the flow, an unsteady hydrodynamic force will act on
a particle of arbitrary shape undergoing a steady rigid-body motion with small but
finite Reynolds number if the axis of rotation of the particle is not its axis of rotational
symmetry. Unsteady flow field is generated owing to such rotation of the body and
as a result the particle experiences a time-dependent translational resistance. In this
paper, we analyse this time-dependent hydrodynamic force and obtain its higher-order
correction by systematically expanding the Navier–Stokes equation in small Reynolds
number.

1. Introduction
In this paper, an arbitrary particle undergoing a steady rigid-body motion in viscous

fluid is considered where the particle is rotating about an axis which is not its axis of
rotational symmetry. Such rotation creates an unsteady flow near the body, even if
the free-stream flow far away from the body is time independent. The inertial effect
of this unsteady near field is described here for small but finite Reynolds numbers in
terms of unsteady instantaneous hydrodynamic force.

In general, particle motion in creeping flow is a classical problem in hydrodynamics,
and for more than a century, various effects of flow fields on the motion of particles
of different shapes have been analysed. For example, the hydrodynamic resistance
on a translating sphere was first studied by Stokes in 1851 and then by Basset
and Oseen. More recently, such motion of a sphere was investigated in shear flow
(Saffman 1965), in non-uniform flows (Mazur & Bedeaux 1974; Maxey & Riley 1983)
and in oscillating flows (Mei, Lawrence & Adrian 1992; Lovalenti & Brady 1993). The
effect of the rotation of a spinning sphere in a viscous fluid has also been analysed
(Rubinow & Keller 1961).

For our analysis, we consider only non-spherical particles, which produce unsteady
near-field because of their rotation. There are numerous studies which describe
dynamics of such non-spherical particles in both steady and time-dependent free-
stream flow with low Reynolds number. Such results are available for spheroids
(Lawrence & Weinbaum 1986, 1988), slender bodies (Khayat & Cox 1989) and rod-like
particles (Pitiman & Kasiri 1992). For arbitrary rigid bodies, the analytical expressions
for force and torque have been derived with higher-order inertial corrections
(Brenner & Cox 1963; Cox 1965; Chester 1990) and the flow fields around such
bodies have been numerically evaluated (Youngren & Acrivos 1975). The particle
dynamics was also described when the arbitrarily shaped body interacts with time-
dependent flows (Gavze 1990). Similar analysis has also been published for assemblage
of particles (Leshansky, Lavrenteva & Nir 2004). However, in the aforementioned
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works, the unsteady near-field due to the rotation of the particle is never considered;
this produces an additional time-dependent inertial correction to the hydrodynamic
force on the body.

In earlier work, the effect of the rigid-body rotation on the hydrodynamic resistance
was observed (Brenner 1963, 1964). However, the effect, discussed in these papers, is
completely different from the inertial effect described here. In these prior papers, the
flow field was considered quasi-steady and Stokesian whereas in this present work
unsteadiness of the near field modifies the instantaneous hydrodynamic resistance.
The problem, analysed here, has similarities with the studies of the generalized
unsteady history force due to the unsteady motion of a rigid body (Lovalenti &
Brady 1993, 1995). Similar physics is also observed in multi-particle systems where
the time dependence of the Stokesian flow field is caused by the change in the relative
position of the particles in the assemblage (Leshansky et al. 2004).

In order to determine the unsteady effect of particle rotation, we use Reynolds-
number expansion which is presented in § 2. We derive the leading-order quantities
related to zeroth-order terms in Reynolds-number expansion in § 3 and higher-order
corrections in § § 4 and 6. Examples of the effect discussed are illustrated in § 5 for
linear chains and square arrays of rigidly welded spheres to demonstrate the physical
implication of the analysis. Finally, conclusions are drawn in § 7.

2. Expansions of governing equations
We consider Navier–Stokes equation for non-dimensional relative velocity field (u)

with respect to the moving rigid body in a coordinate system translating with the
particle:

∇2u − ∇p = Re

(
Sl

∂u
∂t

+ u · ∇u
)

, ∇ · u = 0. (2.1)

Here, Re and Sl are the Reynolds number (UL/ν) and the Strouhal number (LΩ/U )
with L, U and Ω being the characteristic length, linear speed and angular speed of
the body and ν denoting the kinematic viscosity. The non-dimensional position r ,
velocity u, time t and pressure p are scaled with L, U , 1/Ω and νU/L. For this
problem, the boundary conditions on the body surface (B) and at the infinity are:

u|B = Sl êΩ × r, u|r→∞ = −êu, (2.2)

where êu and êΩ are unit vectors along the linear and the angular velocity of the
body. For mathematical convenience, the origin is set on the axis of steady rotation
which moves with the body in a planar locus without changing its orientation. The
offset between the axis of rotation and the centre of mass of the body is considered
to be of the order of L.

As the particle rotates and translates steadily, the relevant fields are periodic in
time:

u(r, t) =

∞∑
n=−∞

un(r)eint , p(r, t) =

∞∑
n=−∞

pn(r)eint . (2.3)

Substituting (2.3) into (2.1), we find that mode velocity un and mode pressure pn

satisfy,

∇2un − ∇pn = Re

(
i n Sl un +

∞∑
j=−∞

uj · ∇un−j

)
, ∇ · un = 0. (2.4)
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In this paper, instead of (2.1), the above equations are solved for different frequency
modes. We consider the Reynolds number to be less than unity and the Strouhal
number to be between Re and Re−1 so that we can correctly apply perturbative
techniques to determine the mode fields. Accordingly, we divide the domain into three
subdomains (inner, intermediate and outer) and then, for the leading order, mode
equations (2.4) are simplified by neglecting the corresponding inconsequential terms
in each region. For higher orders, the mode velocity and pressure fields are expanded
as series functions of Reynolds number. We derive hierarchical sets of equations for
each term in these expansions where the neglected terms are incorporated in the next
order equation in the hierarchy. Then with proper matching conditions between the
fields of adjacent regions, the flow fields are solved.

2.1. Inner expansion

The flow field near the rigid body can be considered as viscous where the inertial terms
in governing equations are negligible with respect to the viscous term. From scaling
argument between the viscous and the temporal term in (2.1), it can be concluded
that the mode fields should be expanded in terms of power series of

√
Re

un =

∞∑
m=0

unmRem/2, pn =

∞∑
m=0

pnmRem/2. (2.5)

Substituting (2.5) into (2.4), we derive equations for the expansion velocity and
pressure:

∇2unm − ∇pnm = 0 (m < 2), (2.6a)

∇2unm − ∇pnm = in Sl un,m−2 +

∞∑
j=−∞

m−2∑
k=0

ujk · ∇un−j,m−2−k (m � 2), (2.6b)

and

∇ · unm = 0. (2.6c)

We refer to (2.6) as inner equations.

2.2. Intermediate and outer expansion

The intermediate region is the region where the unsteady term in (2.1) becomes
comparable to the viscous term and the convective term remains negligible. Here,
the characteristic length is rescaled by

√
Re and an intermediate length variable is

defined:

r̃ = r
√

Re. (2.7)

Also we define intermediate mode velocity and pressure fields in the following way:

ũn(r̃) = un(r), p̃n(r̃) = pn(r)/
√

Re. (2.8)

These intermediate fields are expanded as a polynomial series of
√

Re:

ũn =

∞∑
m=0

ũnmRem/2, p̃n =

∞∑
m=0

p̃nmRem/2. (2.9)

From (2.4), we find the equation for ũnm and p̃nm by substituting the proper variables:

∇̃2ũn0 − i n Sl ũn0 − ∇̃p̃n0 = 0, (2.10a)
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∇̃2ũnm − i n Sl ũnm − ∇̃p̃nm =

∞∑
j=−∞

m−1∑
k=0

ũjk · ∇̃ũn−j,m−1−k (m � 1), (2.10b)

and

∇̃ · ũnm = 0, (2.10c)

where, ∇̃ is the gradient in r̃ space. These equations are named as intermediate
equations.

The flow fields in the inner and intermediate regions are the most important
for obtaining the leading-order contribution of the unsteady effect of the particle
rotation. Still, we present a brief discussion on the outer subdomain where the
convective term in the momentum equation is comparable to the diffusive term. Here,
the rescaled length is r ′ = rRe and redefined mode velocity and mode pressure fields
are u′

n(r ′) = un(r) and p′
n(r ′) = pn(r)/Re. We can express u′

n and p′
n as a series function

of
√

Re in an expansion similar to (2.9). However, for n �= 0, when the unsteady term
exists in (2.4), this expansion is meaningless and the expansion fields u′

nm and p′
nm are

trivially zero for steady free-stream flow. For n = 0, when the unsteady term in (2.4)
is absent, the equation for u′

0m and p′
0m is obtained considering steady and uniform

free-stream flow

∇′2u′
0m − ∇′p′

0m −
m−2∑
k=0

u′
0k · ∇u′

0,m−k = 0 (m � 2), (2.11)

which is the Oseen equation for m = 2. When m < 2, u′
0,m is derived from free-stream

flow.

2.3. Matching conditions between adjacent regions

The necessary boundary conditions for the expansion equations (2.6), (2.10) and (2.11)
for the three regions are derived from the matching conditions between the inner,
intermediate and outer solutions. These matching conditions are deduced from the
fact that if the expansions for these three regions are evaluated with an infinite
number of terms all of them actually depict the same flow field. They are as follows:

u′
nm|r ′→0 = δn0

m∑
i=1

ũ(−i)
n,m−i(r̃)Re−i/2 (m > 0), (2.12a)

ũnm|r̃→0 =

m∑
i=1

u(−i)
n,m−i(r)Re−i/2 (m > 0), (2.12b)

ũnm|r̃→∞ =

m∑
i=0

u
′(i)
n,m−i(r

′)Re−i/2, (2.12c)

unm|r→∞ =

m∑
i=0

ũ(i)
n,m−i(r̃)Re−i/2, (2.12d)

where δ is the Kronecker delta and v(q)(r) is the part of v(r) which behaves as
rq(1 + kq log r). In our analysis, the constant kq always remains zero. The conditions
for u′

n0 and ũn0 at the origin are not given in (2.12). They are non-singular when
r → 0.
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For the inner region, we solve (2.6) with the matching condition (2.12d) and
boundary condition at the particle surface. The solutions for the intermediate region
are obtained by solving (2.10) with matching conditions (2.12b) and (2.12c) whereas
for the outer region, (2.11) and (2.12a) are solved along with the free-stream boundary
condition at the infinity.

3. Zeroth-order solutions
The zeroth-order flow fields are the leading-order terms in Reynolds-number

expansions of velocity fields defined as u′
n0, ũn0 and un0. For the outer and intermediate

region, u′
n0 and ũn0 are non-singular at the origin and satisfy the following conditions

at infinity:
∞∑

n=−∞
u′

n0 eint =

∞∑
n=−∞

ũn0 eint = −êu. (3.1)

Accordingly, analysis of the previous section implies

u′
n0 = ũn0 = −êuδn0. (3.2)

The leading-order inner solution can be obtained by solving (2.6a) with appropriate
boundary conditions (2.2). In order to do so, we revisit the earlier studies of Stokes
flow around an arbitrary body (Brenner 1963, 1964). According to this analysis, the
quasi-steady Stokes flow field (v) around a rotating translating sphere is expressed as:

v = −êu + Ku(r) · êu + Sl KΩ (r) · êΩ, (3.3)

where Ku and KΩ are two position-dependent second-order tensors. This implies the
unsteady zeroth-order inner field can be expressed as

∞∑
n=−∞

un0 eint = −êu + Ku(r, t) · êu + Sl KΩ (r, t) · êΩ. (3.4)

Here, the time dependence of Ku and KΩ arises owing to the change in the orientation
of the rigid body rotating about an axis which is not an axis of rotational symmetry.
The spatial dependence of Ku and KΩ is complicated and is dependent on the shape
of the particle. However, if these tensorial functions are known at t = 0, their temporal
evolution can be derived in terms of their respective initial values Ki

u and Ki
Ω .

The key step in this derivation of the temporal evolution is to recognize the time-
invariant symmetries associated with the tensors Ku and KΩ . Let us consider a set of
inertial basis vectors which are not changing with time and another set of rotating
basis vectors which are fixed with the body. As Ku and KΩ are dependent only on
the shape and the orientation of the body, the representations of these tensors in the
rotating basis at a point which is also rotating with the body are time independent.
Therefore, we must deal with two different kinds of transformation in order to
exploit this symmetry. First, we must consider the orthonormal transformation of the
tensors from the rotating basis to the inertial basis and then we take into account
the transformation describing the change in the position of the rotating observation
point. A pictorial representation of these transformations is shown in figure 1 to
reveal the intuitive justification behind the invariance of the tensorial fields.

We name this relation body invariance. Using this symmetry and considering that
the axis of the steady rotation passes through the origin of the coordinate system, we
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r

t

r
v (r, t) = Ku(r, t) . eu 

J . v =  Ku
i(J . r) . J . eu 

v(r, 0) =
Ku

i(r) . eu

v(J . r, 0) =

Ku
i(J . r) . eu

J (t) . r

(a) (b)

ˆ
ˆ

ˆ

 ˆ

 ˆ

eu êu

Representations in
rotating basis

} }

Figure 1. The temporal evolution of the body invariant tensor according to the symmetry
relation (3.5). (a) The dashed vector is r at the initial time = 0. The dash-dot line indicates a
vector which is rotating with the body. (b) When time = t , this dash-dot line coincides with r .
According to the body invariance symmetry, the representation of the tensor Ki

u in the rotating
basis is invariant of time on the rotating dash-dot line.

find that:

Ku(r, t) = JT (t) · Ki
u(J · r) · J(t), KΩ (r, t) = JT (t) · Ki

Ω (J · r) · J(t). (3.5)

Here, J is the time-dependent orthonormal evolution tensor whose representation
in terms of the inertial basis is the same as the orthonormal transformation matrix
between the rotating and the inertial basis. Hence,

J(t) = (I − êΩ êΩ ) cos t + êΩ êΩ + E · êΩ sin t, (3.6)

where I and E are the second-order identity tensor and the third-order permutation
tensor.

Tensors Ki
u and Ki

Ω are singular at the origin and decay at infinity as a summation
of decaying tensorial terms with different negative powers of distance r . Among them,
the tensors Ki

u(−1) and Ki
Ω(−1), which decay as the inverse of the distance from the

origin, are of special interest for two reasons. First, they are associated with u(−1)
n0

which provides the matching condition for the next higher-order equation for the
intermediate subdomain in (2.12b). Secondly, they are required in order to evaluate
the zeroth-order hydrodynamic force on the particle. These two tensors which decay
as 1/r at infinity are:

Ki
u(−1)(J · r) = T(J · r) · Fi, Ki

Ω(−1)(J · r) = T(J · r) · F̄i, (3.7)

where the origin is on the axis of steady rotation and T is the Oseen tensor

T(r) =
1

8π

(
I

r
+

r r
r3

)
. (3.8)

Constant tensors, represented as Fi and F̄i, are translation–translation and translation–
rotation friction tensors and are known for specific shape and initial orientation of
the particle. Subscript i indicates that these tensors are determined at the initial time.
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From the definition of u(−1)
n0 in § 2.3 and (3.4), (3.5) and (3.7), the zeroth-order inner

flow field decaying as 1/r can be expressed as

∞∑
n=−∞

u(−1)
n0 eint = JT (t) · T(J · r) · Fi · J(t) · êu + Sl JT (t) · T(J · r) · F̄i · J(t) · êΩ. (3.9)

Substituting (3.6) and (3.8) into (3.9) and replacing cos t and sin t in the expression
of J by eit and e−it , we derive the explicit expressions for u(−1)

n0

u(−1)
n0 = T(r) · f n0. (3.10)

Here, f n0 is the amplitude of the non-dimensional force oscillating in time with n/2π
frequency:

f 0,0 =
[
JT

1 · Fi · J−1 + JT
0 · Fi · J0 + JT

−1 · Fi · J1

]
· êu + Sl JT

0 · F̄i · êΩ, (3.11a)

f 1,0 = f ∗
−1,0 =

[
JT

1 · Fi · J0 + JT
0 · Fi · J1

]
· êu + Sl JT

1 · F̄i · êΩ, (3.11b)

f 2,0 = f ∗
−2,0 = JT

1 · Fi · J1 · êu, (3.11c)

where ∗ indicates complex conjugate. The tensors J0, J1 and J−1 are obtained from
the expansion J(t) =

∑1
n = −1 Jneint:

J0 = êΩ êΩ, J1 = (I − êΩ êΩ − iE · êΩ )/2, J−1 = JT
1 = J∗

1. (3.12)

When |n| > 2, f n0 is zero. Therefore, net zeroth-order force on the rigid body is

f 0 = ηUL

2∑
n=−2

f n0 eint . (3.13)

This equation along with (3.11) and (3.12) describes the unsteady zeroth-order force
on the rotating–translating particle and (3.10) is used to obtain first-order inertial
correction.

The time average of the leading-order force is an important quantity because it
governs the dynamics of the particle in large time scale. The zeroth-order time-
averaged force is represented by f 0,0, and from (3.11a) we present its detailed
structure:

〈 f 0〉 = ηUL f 0,0 = ηUL

[
1

2
τ (I − êΩ êΩ ) + τ2 êΩ êΩ

]
· êu + (êΩ · F̄i · êΩ )êΩ. (3.14)

Here, τ1 is the trace of the tensor (I − êΩ êΩ ) · Fi , whereas τ2 is êΩ · Fi · êΩ .
The unsteady component of the Stokesian force in (3.13) is zero when an

axisymmetric body rotates around its axis of rotational symmetry. For such cases, in
(3.11), the tensors Fi and Jj commute:

JT
j · Fi = Fi · JT

j JT
j · F̄i = F̄i · JT

j (j = 0, ±1). (3.15)

Owing to this commuting property, for axisymmetric rotation, the expressions for the
vibrating modes in (3.13) involve products such as JT

0 · J±1 , JT
1 · J1 , JT

−1 · J−1 and
JT

±1 · êΩ which are identically zero. Thus, such rotation cannot create any unsteady
force. Also, we can consider another special case where the linear velocity of the body
is co-linear to its angular velocity. Then the force which vibrates with frequency 1/π
is zero because then J±1 · êu = 0.

For the higher-order inertial correction, the matching condition (2.12) requires an
expression for u(−2)

n0 which decays as r−2 at infinity. We follow the same procedure
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to derive u(−2)
n0 as we did for u(−1)

n0 by defining tensors Ki
u(−2) and Ki

Ω(−2) which are
inversely proportional to the square of distance r:∑

n

u(−2)
n0 eint = JT (t) · Ki

u(−2)(J · r) · J(t) · êu + Sl JT (t) · Ki
Ω(−2)(J · r) · J(t) · êΩ, (3.16)

where,

Ki
u(−2)(J · r) = S(J · r) : Gi, Ki

Ω(−2)(J · r) = S(J · r) : Ḡi. (3.17)

In component form, the third-order tensor S is

Sijk(r) = êj · ∇T : êi êk =
1

8πr3

(
δij rk + riδjk − rj δik − 3rirj rk

r2

)
, (3.18)

whereas Gi and Ḡi are two constant third-order tensors which can be determined
for specific shape and initial orientation of the particle. They satisfy the following
condition

G
iij

i = Ḡ
iij

i = 0. (3.19)

By using (3.16)–(3.18), we obtained u(−2)
n0 ,

u(−2)
n0 = S(r) : gn0. (3.20)

The second-order tensor gn0 is zero for |n| > 3. For 0 � n � 3, components of gn0 are:

g
ij

n0 = g
∗ij

−n0 =

1∑
p=p′(n)

q′′(n,p)∑
q=q′(n,p)

J λi
p J µj

q J νk
n−p−qG

λµν

i ek
u + an Sl

1∑
p=n−1

J λi
p J µj

n−pḠ
λµk

i ek
Ω, (3.21)

where p′(n) = Max (−1, n − 2), q ′(n, p) = Max (−1, n − p − 1), q ′′(n, p) = Min(1, n −
p + 1) and an = 1 − δn3. Max and Min take greater and smaller values between
the arguments.

4. First-order inertial correction
The first-order inertial correction to the hydrodynamic resistance on the particle

depends on the first-order velocity fields u′
n1, ũn1 and un1, of which the outer velocity

field u′
n1 is trivially zero. This is concluded from the governing equation (2.11), the

matching condition (2.12a) and the boundary condition at infinity imposed by the
free-stream flow. Hence, in order to determine the first-order correction, we focus
only on derivation of the first-order intermediate field ũn1 and inner field un1.

4.1. Intermediate flow field

For the first-order intermediate flow field ũn1, the governing equation is described by
(2.10b) and (2.10c). Considering ũn0 = −êuδn0 as a constant field according to (3.2),
we transform (2.10b) into the following form for m = 1:

∇̃2ũn1 − i n Sl ũn1 − ∇̃p̃n1 = 0. (4.1)

Also according to the matching conditions (2.12b) and (2.12c), ũn1 satisfies the
following boundary conditions

ũn1|r̃→0 =
1√
Re

T(r) · f n0 = T(r̃) · f n0, ũn1|r̃→∞ = 0. (4.2)

The above boundary conditions are obtained by using zeroth-order results (3.10) and
(3.2) in matching conditions (2.12b) and (2.12c).
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Solution for ũn1 can be derived analytically:

ũn1 = T̃n(r̃) · f n0, (4.3)

where the second-order tensor T̃n is

T̃n(r̃) =
1

8πr̃

[
I φn(r̃) +

r̃ r̃
r̃2

ψn(r̃)

]
. (4.4)

The scalar functions φn and ψn are equal to 1 for n = 0. Otherwise,

φn(r̃) =
2i

n Sl r̃2

[
1 − e−cnr̃

(
c2
nr̃

2 + cnr̃ + 1
)]

(n �= 0), (4.5)

and

ψn(r̃) =
2i

n Sl r̃2

[
e−cnr̃

(
c2
nr̃

2 + 3cnr̃ + 3
)

− 3
]

(n �= 0), (4.6)

where

cn =
√

|n| Sl eiπ|n|/4n. (4.7)

The real part of cn is always positive so that ũn1 decays at infinity.
The solutions for the inner region for m = 1, 2 depend on ũ(0)

n1 and ũ(1)
n1 because they

provide the necessary boundary conditions for un1 and un2 through the matching con-
dition (2.12d). Therefore we derive the expressions for ũ(0)

n1 and ũ(1)
n1 from ũn1

ũ(0)
n1 = − cn

6π
f n0, ũ(1)

n1 =
i n Sl r̃

32π
(3I − r̃ r̃/r̃2) · f n0 (4.8)

and use them in the analysis of inner region.

4.2. Inner flow field

We solve (2.6a) and (2.6c) with boundary condition (2.2) and (2.12d) to obtain un1.
The matching condition (2.12d) and expression for ũ(0)

n1 (4.8) imply

un1|r→∞ = − cn

6π
f n0. (4.9)

The derivation of un1 is similar to that of un0

∞∑
n=−∞

un1 eint =

2∑
n′=−2

cn′

6π
ein′t [− f n′0 + Ku(r, t) · f n′0]. (4.10)

As for the zeroth order, here also we concentrate on deriving u(−1)
n1 which decays as

1/r

∞∑
n=−∞

u(−1)
n1 eint =

2∑
n′=−2

cn′

6π
ein′tJT (t) · T(J · r) · Fi · J(t) · f n′0. (4.11)

From the above equation, the expression for u(−1)
n1 is obtained in the same way for

u(−1)
n0

u(−1)
n1 = T(r) · f n1. (4.12)

The first-order non-dimensional force f n1, with n/2π oscillation frequency, is

f n1 =

2∑
i=−2

ci

6π
Mn−i · f i0 (4.13)
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where second-order tensors Mn are zero for |n| > 2 and otherwise they are

M0 = JT
1 · Fi · J−1 + JT

0 · Fi · J0 + JT
−1 · Fi · J1, (4.14a)

M1 = M∗
−1 = JT

1 · Fi · J0 + JT
0 · Fi · J1, (4.14b)

M2 = M∗
−2 = JT

1 · Fi · J1. (4.14c)

These tensors can be determined from the expressions of J0, J1 and J−1 in (3.12).
The first-order correction to the hydrodynamic force on the body can be written as

a summation of force-harmonics. When (4.13) and (4.14) are considered, it seems that
the frequency of vibrating force varies from −4 to 4. However, careful analysis shows,
f3,1 = f−3,1 = f4,1 = f−4,1 = 0 because of the structure of f n0 in (3.11). Therefore,

f 1 = ηUL
√

Re

2∑
n=−2

f n1 eint , (4.15)

where f 1 is the first-order inertial correction to the unsteady hydrodynamic force.

5. Hydrodynamic effect of rotation on clusters of spheres
In this section, the effect of the first-order inertial correction to the hydrodynamic

force on a rotating object is demonstrated by considering steady rotation and
translation of clusters of rigidly attached spheres of radius a. The clusters are either
linear chains of connected spheres or square grids of spheres welded in a plane. The
first type of cluster represents rod-like slender bodies, whereas the second kind can
be a model of plate-like objects. The number of spheres either in the linear chains or
along one side of the square grids is denoted by N . Here, for both the chains and the
square grids, two cases are considered with N = 2, 8.

For this problem, the characteristic length scale is of the order of the length of
the chains or of the width of the arrays. Therefore, we set L = aN and the Reynolds
number and the Strouhal number are determined accordingly. For the first-order
corrective force, results are presented in the rescaled form f̄ 1 = f 1/

√
ReSl.

At the initial instant, we consider the linear chains to be along the x-axis and the
square grids to be on the (x, z)-plane where the sides of the squares are parallel to the
x- or z-axis. The objects are rotating about the z-axis and the centre of this steady
rotation is at the midsection of the object. For such rotation, the vertical translation
of the chain along the z-axis does not produce significant unsteadiness owing the
geometrical symmetry. However, when the cluster moves in the horizontal plane, we
can observe a substantial unsteady effect of the rotation. We choose the translation
of the chain in the x-direction. It is to be noted that this choice does not reduce
the generality of the physics described because any other choice of translation would
only contribute in a temporal phase difference in the dynamical solution.

The Stokes resistant matrices of the linear chains have been calculated by
(Bhattacharya, Blawzdziewicz & Wajnryb 2005). Similar results can be obtained for
the square grids also. In both cases, the representation of the translation–translation
friction Fi in the basis vectors along x, y and z coordinates is diagonal for the initial
orientation. These diagonal elements are normalized by the corresponding values for
a sphere of radius L and are given in table 1. As the centre of rotation is at the
middle of the array, F̄i = 0.

In figure 2, the normalized horizontal components of the instantaneous zeroth-
order viscous force and first-order corrective force are plotted as a function of time.
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F xx
i /6πN F

yy

i /6πN F zz
i /6πN

Linear chain N=2 0.645 0.725 0.725
Linear chain N=8 0.322 0.435 0.435
Square grid N=2 0.888 0.997 0.888
Square grid N=8 0.747 0.986 0.747

Table 1. The ratio between the translation–translation friction elements for the objects in their
initial orientation and the same for a sphere of radius L = aN . The objects are either rigid
linear chains of spheres aligned along the x-axis or square arrays of rigidly attached sphere
in the (x, z)-plane. The number of spheres either in the linear chain or along one side of the
square array is N .
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Figure 2. Normalized zeroth-order and first-order instantaneous hydrodynamic force on the
body as a function of time. The plots present components of the horizontal forces for
one-dimensional chains of welded spheres with N = 2 (solid line) and N = 8 (long dash line),
and for square grids of welded spheres in a two-dimensional plane with the number of particles
along one side of the square being N = 2 (short dash line) and N = 8 (dotted line).

The time period is such that the object will go through a full rotation in this interval.
The curves show that these forces are sinusoidal functions of time with frequency
1/π superposed on a steady constant. For a general object, there might be another
vibrating mode with frequency 1/2π. However, if the direction of the angular velocity
coincides with the direction of one of the eigenvectors of the Stokes resistance tensor,
there will be no oscillatory force with frequency 1/2π.

The amplitudes of the sinusoidal curves for the zeroth-order force depend on the
difference in the magnitude of two eigenvalues of the Stokes resistance matrix in the
horizontal plane (table 1). This difference is more for plate-like bodies than for linear
objects and increases with N . This is why the amplitude of oscillation is largest for
the square grids with N = 8 and least for the linear chain with N = 2. The mean
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Figure 3. Phase diagram of the zeroth-order viscous force and the first-order inertial
correction presenting the values of both forces at a particular time which varies as a parameter
in the plots. (a) x components; (b) y components. The line types are as in figure 2.

value of the zeroth-order force, on the other hand, depends on the summation of the
eigenvalues of the horizontal eigenvectors. Accordingly, among the objects considered,
this mean value is maximum for the square grid with N = 2 and is minimum for the
linear chain with N = 8. This observation is consistent with the values in table 1.
The time-averaged Stokesian force on the rotating body always acts in the opposite
direction of the translation of the particle which is manifested in the f

y

0 –t plots where
the curves oscillate about zero.

The amplitude of the oscillatory part of the first-order correction is proportional
to the difference between the square of the horizontal eigenvalues and is of similar
nature as that of the zeroth-order force. Unlike the zeroth-order force, the average
value of the first-order force acts at an angle of 3π/4 with respect to the direction of
the translational velocity when the body rotates counterclockwise. If the direction of
rotation is reversed, the lift component of this average force reverses its direction
while the drag component remains unchanged. This line of action is independent of
the shape of the body as long as the angular velocity vector is an eigenvector of
Fi. The magnitude of the mean first-order force is proportional to the square of the
differences in the relevant eigenvalues and it increases substantially with N , especially
for the square grids.

The figures reveal that there are phase differences between f x
0 , f

y

0 , f x
1 and f

y

1 . The
first-order correction leads the zeroth-order force by a temporal phase of π/8. On
the other hand, the y-components of the force lag with respect to the corresponding
x-components by π/4. These temporal phase differences are shape independent. This
is why, in each subplot of figure 2, the curves for different objects show no phase
difference between them.

In figure 3, the effect of the phase difference is revealed. In these plots, the
instantaneous values of the zeroth- and the first-order forces are represented by a
point whereas time varies along the curve as a parameter. The plots are Lissajous
figures which illustrate the mean values, amplitudes and phase difference between two
quantities. The earlier observations on the average and the amplitude of the zeroth-
and first-order force are corroborated by this figure.

The oblique ellipses appear in the plots because of the phase difference of π/8;
(phase difference of ±π/2 would have produced straight lines with slope ±1 whereas
±π/4 would generate a straight ellipse). This is a well-known fact about the Lissajous
figures when the frequency of vibration is 1/π. In general, for an arbitrary body,
where the forces also oscillate with a frequency of 1/2π along with 1/π, a f1–f0 phase
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Figure 4. (a) The ratio between the magnitude of the steady part of the first-order inertial
correction and the same of the zeroth-order viscous force. (b) The ratio between the amplitude
of the vibrating part of the first-order inertial correction and the same of the zeroth-order
viscous force. Both ratios are obtained for the one-dimensional chains of welded spheres (solid
line) and the square grids of welded spheres in a two-dimensional plane (dashed line). The
ratios are plotted as a function of the number of spheres N either in the chains or along one
side of the square.

plot will be a more complicated Lissajous curve than a simple ellipse. However, in
spite of its simplicity, the present plot reveals all the essential physics.

The previous discussion indicates that the geometrical effect of the shape of the
body affects the amplitudes of the sinusoidal oscillation and the mean values of the
forces through the horizontal eigenvalues of the Stokes resistance. These eigenvalues
depend on the number N . Therefore, in figure 4, we have studied the effect of N on
the hydrodynamic forces. The ratio between the averages of the first-order force and
the Stokesian force are plotted along with the ratio of their oscillatory amplitudes as
a function of N to understand the relative importance of the inertial correction.

The mean value of the first-order force increases with N , whereas the time-averaged
zeroth-order force decreases for larger N . As a result, the ratio between them increases
with the number of particles, especially for the square grids. In contrast, the ratio
of the two amplitudes has a decreasing trend because this ratio is proportional to
F xx

i + F
yy

i which is less for larger N . With increasing N , the summation diminishes
faster for the linear chains. This is why the ratio between the amplitudes for the
chains has a faster decay for higher values of N .

6. Second-order inertial correction
In this section, we determine the second-order inertial correction to the hydro-

dynamic resistance in order to illustrate how the matching condition in (2.12) can be
used to avoid the Whitehead paradox in such problems. For this purpose, we derived
the second-order fields u′

n2, ũn2 and un2 to obtain this O(Re) correction to the
hydrodynamic resistance.

6.1. Second-order outer solution

The second-order outer velocity field is trivially zero for n �= 0. When n = 0, the outer
flow field u′

0,2, is governed by the Oseen equation which can be obtained from (2.11)
and (3.2),

∇′2u′
0,2 + êu · ∇u′

0,2 − ∇′p′
0,2 = 0. (6.1)
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At infinity, u′
0,2 decays to zero and at the origin, according to matching condition

(2.12a),

u′
0,2|r ′→0 = ũ(−1)

0,1 (r̃)Re−1/2 + ũ(−2)
0,0 (r̃)Re−1 = T̃0(r̃) · f 0,0 Re−1/2 = T(r ′) · f 0,0. (6.2)

The solution of (6.1) and (6.2) is known (Brenner & Cox 1963). Here, instead of u0,2,

we only describe u,(0)
0,2 which provides the necessary matching condition (2.12c) for ũ02.

u,(0)
0,2 =

1

32π
[êu · ∇′(r ′r ′ · f 0,0/r ′ − 3r ′ f 0,0) − 3 f 0,0 + êu êu · f 0,0]. (6.3)

The above equation illustrates the leading-order behaviour of the outer flow field
when flow reversal occurs. When êu reverses its direction, the Stokesian force f 0,0

also acts in the opposite direction. However, this does not imply the entire reversal of
the leading-order correction field u,(0)

0,2 . When the body moves in the opposite direction,
one part of this field, êu · ∇′(r ′r ′ · f 0,0/r ′ − 3r ′ f 0,0)/32π , remains unchanged whereas
the remainder, (−3 f 0,0 + êu êu · f 0,0)/32π , switches its direction.

6.2. Second-order intermediate solution

The second-order intermediate solutions have slightly different forms for n = 0 and
n �= 0. Therefore, we consider these two cases separately.

When n = 0, the governing equation for ũ02 is derived from (2.10b) and solved along
with the proper boundary conditions at infinity and at the origin given by (2.12):

ũ0,2 =
1

32π
[êu · ∇̃(r̃ r̃/r̃ − 3r̃I) + (êu êu − 3I)] · f 0,0 + T(r̃) · f 0,1 + S(r̃) : g0,0. (6.4)

From (6.4), we can conclude that,

ũ(0)
0,2 = u,(0)

0,2 =
1

32π
[êu · ∇̃(r̃ r̃/r̃ − 3r̃I) + (êu êu − 3I)] · f 0,0. (6.5)

which we use to derive the matching condition for the inner region. The similarity
between (6.3) and (6.5) appears to be due to the absence of the unsteady term in the
intermediate equation for n = 0.

When n �= 0, we obtain ũn,2 by solving the relevant equations in a similar fashion:

ũn,2 = −êu · ∇̃T̃n2(r̃) · f n,0 + T̃n(r̃) · f n,1 + gn,0 : ∇̃T̃n(r̃). (6.6)

Here, the first term on the right-hand side of (6.6) is the particular integral for the
governing equation and the other terms are general solutions to satisfy the boundary
conditions. The second-order tensor T̃n2 is

T̃n2(r̃) =
1

8πr̃

[
I αn(r̃) +

r̃ r̃
r̃2

βn(r̃)

]
, (6.7)

where the scalar functions αn and βn are

αn(r̃) =
1

3n2 Sl2 r̃2

[
3e−cnr̃

(
c3
nr̃

3 + c2
nr̃

2 + 2cnr̃ + 2
)

− 2
(
c3
nr̃

3 + 3
)]

(n �= 0), (6.8)

βn(r̃) =
1

n2 Sl2 r̃2

[
6 − e−cnr̃

(
c3
nr̃

3 + 3c2
nr̃

2 + 6cnr̃ + 6
)]

(n �= 0). (6.9)

We also determine ũ0
n2 which is necessary for the derivation of un2:

ũ0
n2 = − cn

6π
f n,1 +

1

32π
(i n Sl gn,0 − f n,0 êu) : ∇̃(3r̃I − r̃ r̃/r̃). (6.10)
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For |n| = 3, in general, g±3,0 are non-zero. Therefore, though, for |n| > 2, both f n,0

and f n,1 are zero, there is still a non-zero contribution to ũ0
n2 when n = ±3.

6.3. Second-order inner solution

The second-order inner equation is obtained from (2.6b) in the form

∇2un,2 − ∇pn,2 = i n Sl un,0 +

∞∑
j=−∞

uj,0 · ∇un−j,0 = sn, (6.11)

where the source term on the right-hand side of (6.11) is defined as sn. For an arbitrary
body, zeroth-order inner fields un,0 are not explicitly described in (3.4) where they
are expressed in terms of Ki

u and Ki
Ω without presenting functional forms of these

tensors. Therefore, the analytical expression for sn is not known and the close form
explicit solution for un,2 is impossible to derive. However, the second-order force can
still be determined from (6.11) in an integral form (Brenner & Cox 1963; Lovalenti
& Brady 1993).

In order to deduce the integral expression, we take the inner product of (6.11)
with Ku and integrate it over the entire volume, excluding the space occupied by
the particle. To simplify the integral, we use integration by parts and the divergence
theorem while considering un,2 = 0 at the body surface (B) and

Ku|B = I, ∇ · Ku = 0, ∇2Ku = ∇ku, (6.12)

where ku is a vector. After simplifying the integral equation, the second-order cor-
rection of the hydrodynamic force f 2 is obtained

f 2

ηUL Re
=

∞∑
n=−∞

eint

∫
B

n̂B · (∇un,2 − pn,2I) dS =

∞∑
n=−∞

eint

(∫
Γ

ān dS −
∫

Γ B
b̄n dV

)
, (6.13)

where n̂B is the unit outer normal vector on the body, Γ denotes the surface of an
infinitely large sphere centred at the origin, Γ B is the entire external volume bounded
by the surface of the infinite sphere and the outer surface of the particle, and, dS and
dV are, respectively, the infinitesimal surface and volume element. The vectors ān and
b̄n are

ān = n̂Γ · (∇un,2 · Ku − pn,2Ku − ∇Ku · un,2 + un,2ku)|r→∞, (6.14)

b̄n = sn · Ku =
(
i n Sl un,0 +

∑
uj,0 · ∇un−j,0

)
· Ku, (6.15)

where n̂Γ is the unit outer normal vector on Γ . Considering the condition for un,2 at
infinity,

un,2|r→∞ = ũ(0)
n,2(r̃) + ũ(1)

n,1(r̃)Re−1/2, (6.16)

the right-hand side of (6.15) is evaluated using (6.10) and (4.8).
To derive f n2 in further detail, the vector integrands ān and b̄n are decomposed

ān =

∞∑
i=1

ā(i)
n , b̄n =

∞∑
i=2

b̄
(i)

n , (6.17)

where ā(i)
n and b̄

(i)

n are terms which decay as r−i with r . Among them, terms ā(i)
n

for i > 2 do not contribute in the integral. The surface integral of ā(2)
n at Γ and the

volume integrals of terms b̄
(i)

n in Γ B for i > 2 are finite whereas the integrals involving

ā(1)
n and b̄

(2)

n are individually infinite. However, a closer scrutiny of these terms shows
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that the difference between these two infinite integrals is finite.∫
Γ

ā(1)
n dS −

∫
Γ B

b̄
(2)

n dV =

∫
B

cn dS, (6.18)

where

cn = n̂B ·
(
∇v

(1)
n,1 · Ku(−1) − ∇Ku(−1) · v(1)

n,1 + v
(1)
n,1ku(−1)

)
. (6.19)

Here, Ku(−i) is given by JT · Ki
u(−i)(J · r) · J and k(−i) is the corresponding vector defined

in (6.12) with

v
(1)
n,1 =

√
Reũ(1)

n,1(r̃) = (i n Sl/32π)(3rI − r r/r) · f n0. (6.20)

The cancellation of two infinite integrals to produce a finite difference in (6.18)
validates the expansions and matching conditions introduced in § 2.

Using (6.13)–(6.18), the second-order force can be expressed by non-zero finite
integrals

f 2 = η U L Re

∞∑
n=−∞

eint

(∫
Γ

an dS −
∫

Γ B
bn dV +

∫
B

cn dS

)
, (6.21)

where the vector integrand an and bn are such that they produce finite non-zero
integrals

an = ā(2)
n , bn = −

[
i n Sl (un,0 − T · f n,0) +

∑
uj,0 · ∇un−j,0

]
· Ku. (6.22)

In (3.13) and (4.15), we saw that the zeroth- and the first-order forces vibrate with only
two frequencies. However, there are an infinite number of frequencies with which the
second-order force vibrates because the integrands in (6.21) are in general non-zero
for any n.

Rubinow & Keller (1961) derived the corrective force on a spinning sphere due to
fluid inertia. This prior result can be obtained from (6.21) when a spherical body is
considered to be rotating about its centre. In such a case, because of the spherical
symmetry, only terms involving n = 0 are considered in (6.21) to recover the old result.

7. Conclusion
In this paper, the unsteady hydrodynamics of a steadily translating and rotating

particle is analysed and the expression for the unsteady hydrodynamic force is
derived. For this purpose, first we systematically describe the necessary Reynolds-
number expansion to determine the effect of the unsteady flow field generated owing
to the rotation of the particle. We take into account the periodicity of the fields with
time and develop expansion equations and matching conditions accordingly.

Then we proceed to describe the leading-order solutions in our expansion. The key
element in this derivation is the body invariance relation (3.5) which implies that the
representation of relevant tensorial quantities in a set of basis vectors fixed with the
body is time invariant. This relation is used to derive zeroth-order unsteady quantities.

Our analysis shows that the inherently unsteady leading-order flow field produces
time-dependent Stokes resistance on the body. This force has a steady part and two
other modes which vibrate with frequencies 1/2π and 1/π. However, this unsteady
phenomenon occurs only when the particle is rotating about an axis which is not
its axis of rotational symmetry. When an axisymmetric body rotates around its axis
of symmetry, we have shown that the vibrating modes of the hydrodynamic force
vanish.
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We systematically use the introduced Reynolds-number expansion to obtain the
first-order inertial correction to the hydrodynamic force. Similar to the zeroth-order
force, the first-order force also has a steady part and two vibrating modes with
frequencies 1/2π and 1/π in (4.15). Because of the existence of the steady part, the
time-averaged first-order force on the particle is non-zero. This suggests that the
effect of the unsteady near-field correction due to the particle rotation not only has
an instantaneous impact on the particle motion, but may also alter the long-time
behaviour of the particle. However, it would be a matter of future work to establish
this conjecture on a firm theoretical basis. Physically, the existence of a non-zero
time-averaged first-order correction implies that, with respect to the real flow, the
Stokes flow field has a preferential error which produces a finite force on the rotating–
translating particle. The first-order force is proportional to

√
Re and therefore, its

effect on the particle is bigger than the effect of the Oseen correction.
We have applied our theoretical results to obtain the zeroth-order unsteady

Stokesian force and the corresponding first-order inertial corrections for the clusters
of rigidly connected spheres. Two types of cluster configuration are considered – linear
chains of touching spheres and two-dimensional square arrays of attached spheres.
Our results indicate that the line of action of the time-averaged first-order force and
its temporal phase difference with the zeroth-order force are independent of the shape
of the object considered if the angular velocity vector is along an eigenvector of the
Stokes resistance tensor.

Finally, we also derive the integral expression for the second-order inertial correction
to the hydrodynamic force in (6.21). The second-order force has an infinite number of
vibrating modes. Though, for an arbitrary body, it is not possible to derive the exact
analytical expression for this force, the finiteness of the integrals in the expression
(6.21) validates the correctness of the analysis.

I would like to acknowledge the support provided by Jerzy B�lawzdziewicz from the
NSF grant CTS-0201131.
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